top of page

Key Publications

UKM expert profile click here

Google Citation click here

Key Publications: Publications

Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy

February 2016

A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections.

Distribution and Characterization of Rhogocyte Cell Types in the Mantle Tissue of Haliotis laevigata

April 2015

Molluscan rhogocytes are known to be the only cells able to synthesize hemocyanin that is one of the largest respiratory proteins in nature. However, investigation of rhogocyte cells in vitro is limited due to difficulty in isolating and establishing marine cell culture. The aim of this study was to investigate the nature and distribution of rhogocyte cells of Haliotis laevigata in the mantle tissue with respect to the expression of the two known isoforms of hemocyanin. Rhogocyte cells were identified using immunofluorescence-fluorescence in situ hybridization (IF-FISH) that involved simultaneous staining of localized hemocyanin by a polyclonal antibody while the mRNA was hybridized with FISH probes. The distribution of rhogocyte cells was demonstrated using flow cytometry, followed by cell sorting with fluorescence-activated cell sorter (FACS) and confocal microscope imaging for further characterization. Our results suggested that the mantle tissue is dominated by two distinct populations of rhogocyte cells that synthesize hemocyanin type 1. Observation with confocal microscopy of both populations revealed hemocyanin localization in the periphery of the cell membrane. Cell population with higher antibody signal had irregular and elongated cell morphology with punctate mRNA probe signals. The second population with lower antibody signal had ovoid morphology and wide distribution of mRNA probe signals. We suggest that these populations represent two distinct phases of hemocyanin biosynthesis of a single isoform, which is closely related to Haliotis tuberculata type 1 hemocyanin (HtH1). The knowledge acquired in this study enhances the understanding of the biology of rhogocyte cells and biosynthesis of hemocyanin.

Formulation of abalone hemocyanin with high antiviral activity and stability

March 2014

Hemocyanin has been shown to have potential antiviral activity against herpes simplex virus type-1. However, current liquid formulations have short shelf life and high risk of bacterial contamination. The aim of our study was to develop a stable functional formulation. Analytical techniques (nano-differential scanning calorimetry and spectroscopy) and biological assays (cytotoxicity and plaque reduction) were employed to measure the effect of sugar addition on the physical properties and shelf life of the solid formulated hemocyanin. Sucrose improved thermal stability significantly by both increasing the aggregation onset temperature (70 C to >78 C) and enhancing the activation energy (18%). Lyophilisation without trehalose caused degradation and unfolding of the α-helices of hemocyanin. However, the addition of an optimal proportion of trehalose:protein (5:1 by weight) prevented the degradation and unfolding during lyophilisation, hence maintained the protein solubility. The estimated ED50 values of the formulated solid (0.43 ± 0.1) and liquid samples (0.37 ± 0.06) were similar in magnitude, and were significantly lower than the respective controls; thus, confirming enhanced antiviral activity of the formulation. Formulated compounds were stable for six months at 5 C storage. The enhanced shelf life and stable antiviral activity of the formulation offers its significant potential as effective therapeutic agent in future clinical applications.

bottom of page